
Parallel Computing with MATLAB on the Legion HPC Cluster
This document provides the steps to configure MATLAB to submit jobs to a cluster, retrieve results, and debug errors.

Initial Configuration - Running MATLAB on the HPC Cluster
This setup is intended for job submission when you are logged directly into the cluster, either through a command-line
or graphical interface. This process needs to be done once per cluster.

After logging into the cluster, start MATLAB. On the Home tab, click Parallel > Discover Clusters… to discover
the profile.

Follow the prompts to create a new cluster profile. Jobs will run across multiple nodes on the cluster rather than on the
host machine.

Alternate

After logging into the cluster, start MATLAB. Call configCluster to create a new cluster profile.

configCluster

Jobs will run across multiple nodes on the cluster rather than on the host machine.

Initial Configuration - Running MATLAB on the Desktop

This setup is intended for job submission when MATLAB is installed on your machine and jobs are run remotely on the
cluster. This setup needs to be done once per cluster, per version of MATLAB installed on your machine.

Start MATLAB and run userpath

userpath

Download the Cluster MATLAB support package from here. The contents of the ZIP file should be extracted into the
folder returned by the call to userpath.

Create a new cluster profile

configCluster

Submission to the cluster requires SSH credentials. You will be prompted for username and password or identity file
(private key). The username and location of the private key will be stored in MATLAB for future sessions.

Jobs will now run on the cluster rather than on the local machine.

NOTE: To run jobs on the local machine instead of the cluster, use the Process profile.

% Get a handle to the local resources
c = parcluster('Processes');

Configuring Jobs
Prior to submitting the job, various scheduler flags can be assigned, such as queue, e-mail, walltime, etc. [Only YYY is
required OR None of these are required.]

% REQUIRED

% Specify memory to use, per core (default: 4GB)
c.AdditionalProperties.MemPerCPU = '6GB';

% OPTIONAL

% Specify an account
c.AdditionalProperties.AccountName = 'account-name';

% Specify a constraint
c.AdditionalProperties.Constraint = 'feature-name';

% Request email notification of job status
c.AdditionalProperties.EmailAddress = 'user-id@polito.it';

% Specify number of GPUs (default: 0)
c.AdditionalProperties.GPUsPerNode = 1;

% Specify the partition
c.AdditionalProperties.Partition = 'partition-name';

% Specify cores per node (default: 0)
c.AdditionalProperties.ProcsPerNode = 4;

http://www.mathworks.com/

% Set node exclusivity (default: false)
c.AdditionalProperties.RequireExclusiveNode = true;

% Specify a reservation
c.AdditionalProperties.Reservation = 'reservation-name';

% Specify the wall time (e.g., 1 day, 5 hours, 30 minutes)
c.AdditionalProperties.WallTime = '1-05:30';

To persist changes made to AdditionalProperties between MATLAB sessions, save the profile

c.saveProfile

 To see the values of the current configuration options, display AdditionalProperties.

c.AdditionalProperties

 Unset a value when no longer needed.

% Turn off email notifications
c.AdditionalProperties.EmailAddress = '';

% Don't request an entire node
c.AdditionalProperties.RequireExclusiveNode = false;

Interactive Jobs - Running MATLAB on the HPC Cluster
To run an interactive pool job on the cluster, continue to use parpool as before.

% Get a handle to the cluster
c = parcluster;

% Open a pool of 64 workers on the cluster
pool = c.parpool(64);

 Rather than running a local pool on the host machine, the pool can now run across multiple nodes on the cluster.

% Run a parfor over 1000 iterations
parfor idx = 1:1000
 a(idx) = rand;
end

 Delete the pool when it’s no longer needed.

% Delete the pool
pool.delete

Independent Batch Job - MATLAB on the HPC Cluster or Desktop
Use the batch command to submit asynchronous jobs to the cluster. The batch command will return a job object which
is used to access the output of the submitted job. See the MATLAB documentation for more help on batch.

https://www.mathworks.com/help/parallel-computing/batch.html

% Get a handle to the cluster
c = parcluster;

% Submit job to query where MATLAB is running on the cluster
job = c.batch(@pwd, 1, {}, 'CurrentFolder', '.');

% Query job for state
job.State

% If job is finished, fetch the results
job.fetchOutputs{1}

% Delete the job after results are no longer needed
job.delete

To retrieve a list of running or completed jobs, call parcluster to return the cluster object. The cluster object stores an
array of jobs that are listed as queued, running, finished, or failed. Retrieve and view the list of jobs as shown
below.

c = parcluster;
jobs = c.Jobs

% Get a handle to the second job in the list
job2 = c.Jobs(2);

Once the job has been selected, fetch the results as previously done.

fetchOutputs is used to retrieve function output arguments; if calling batch with a script, use load instead. Data that
has been written to disk on the cluster needs to be retrieved directly from the file system (e.g., via sftp).

% Fetch all results from the second job in the list
job2.fetchOutputs{:}

% Alternate: Load results if job was a script instead of a function
job2.load

Parallel Batch Job - MATLAB on the HPC Cluster or Desktop
The batch command can also support parallel workflows. Let’s use the following example for a parallel job, which you
should save separately as parallel_example.m.

function [sim_t, A] = parallel_example(iter)

if nargin==0
 iter = 8;
end

disp('Start sim')

t0 = tic;
parfor idx = 1:iter
 A(idx) = idx;
 pause(2)
 idx
end
sim_t = toc(t0);

disp('Sim completed')

save RESULTS A

end

This time when using the batch command, also specify a Pool argument.

% Get a handle to the cluster
c = parcluster;

% Submit a batch pool job using 4 workers for 16 simulations
job = c.batch(@parallel_example, 1, {16}, 'CurrentFolder','.', 'Pool', 4);

% View current job status
job.State

% Fetch the results after a finished state is retrieved
job.fetchOutputs{1}
ans =
 8.8872

The job ran in 8.89 seconds using four workers. Note that these jobs will always request N+1 CPU cores, since one
worker is required to manage the batch job and pool of workers. For example, a job that needs eight workers will
request nine CPU cores.

Run the same simulation again but increase the Pool size. This time, to retrieve the results later, keep track of the job
ID.

NOTE: For some applications, there will be a diminishing return when allocating too many workers, as the overhead
may exceed computation time.

% Get a handle to the cluster
c = parcluster;

% Submit a batch pool job using 8 workers for 16 simulations
job = c.batch(@parallel_example, 1, {16}, 'CurrentFolder','.', 'Pool', 8);

% Get the job ID
id = job.ID
id =
 4

% Clear job from workspace (as though MATLAB exited)
clear job

With a handle to the cluster, the findJob method searches for the job with the specified job ID.

% Get a handle to the cluster
c = parcluster;

% Find the old job
job = c.findJob('ID', 4);

% Retrieve the state of the job
job.State
ans =
 finished

% Fetch the results
job.fetchOutputs{1};
ans =
 4.7270

The job now runs in 4.73 seconds using eight workers. Run code with different number of workers to determine the
ideal number to use.

Alternatively, to retrieve job results via a graphical user interface, use the Job Monitor (Parallel > Monitor Jobs).

Debugging
If a serial job produces an error, call the getDebugLog method to view the error log file.

When submitting an independent job, specify the task.

c.getDebugLog(job.Tasks)

For Pool jobs, only specify the job object.

c.getDebugLog(job)

When troubleshooting a job, the cluster admin may request the scheduler ID of the job. This can be derived by calling
getTaskSchedulerIDs (call schedID(job) before R2019b).

job.getTaskSchedulerIDs()
ans =
 25539

Helper Functions
Function Description Notes

clusterFeatures Lists cluster features/constraints

clusterGpuCards Lists cluster GPU cards

clusterPartitionNames Lists cluster partition/queue names

disableArchiving Modifies file archiving to resolve file mirroring issues Applicable only to Desktop

fixConnection Reestablishes cluster connection (e.g., after reconnection of VPN) Applicable only to Desktop

willRun Explains why job is queued

To Learn More
To learn more about the MATLAB Parallel Computing Toolbox, check out these resources:

• Parallel Computing Overview
• Parallel Computing Documentation
• Parallel Computing Coding Examples
• Parallel Computing Tutorials
• Parallel Computing Videos
• Parallel Computing Webinars

http://www.mathworks.com/products/parallel-computing/index.html
http://www.mathworks.com/help/distcomp/index.html
https://www.mathworks.com/help/parallel-computing/examples.html
http://www.mathworks.com/products/parallel-computing/tutorials.html
http://www.mathworks.com/products/parallel-computing/videos.html
http://www.mathworks.com/products/parallel-computing/webinars.html

